

AmeriFlux Webinar For Data Users

Webinar Goals:

Who should attend?

- Data users who are interested in AmeriFlux data products.
- Data providers who are interested in learning more about how their data are used.

Presentation (~40 minutes)

- AmeriFlux overview
- AmeriFlux data
- Data use and data use policy
- Data discovery web features
- Gap-filled and partitioned data from ONEFlux
- Data users panel
- Feedback from you about AmeriFlux data

This webinar is being recorded.

Mute during presentation. Unmute for Q&A. View chat window.
Send messages for questions,
comments & zoom help.

Technical support in webinar AMP-webinars@lbl.gov

Poll:

Have you downloaded data from the <u>AmeriFlux</u> website before?

Check out the "Data Life Cycle" webinar

Post-submission Data Life Cycle: FP-In to BASE Publishing

Hosted by AmeriFlux Data Team

Danielle Svehla Christianson, Housen Chu Deb Agarwal, You-Wei Cheah, Fianna O'Brien, Gilberto Pastorello, Rachel Hollowgrass, Marty Humphrey

Slides and recordings of all previous webinars are available at: https://ameriflux.lbl.gov/community/amp-webinar-series/

About AmeriFlux

- Created in 1996 by a group of scientists.
- 15 sites in 1997.
- In 2012, the U.S. DOE established the AmeriFlux Management Project (AMP) at Lawrence Berkeley National Laboratory (LBNL).
- 390 sites with published data today.
 - => 2605 site years of data.

Updated AmeriFlux Data Use License

Deb Agarwal

AMP Data Team lead

- Use the Data-Download form to describe how you plan to use the data and if you plan to use in publications. This statement is sent to the data contributor(s), and then posted to the AmeriFlux Data Download Log.
- When you start in-depth analysis that may result in a publication, <u>contact the data contributors directly</u>, so that they have the opportunity to contribute substantively and become a co-author.

Acknowledge AmeriFlux data in publications

- Cite the relevant site DOI and dataset citation listed on its Site General Info page (DOI tab) or use Site Set for DOI citation generation.
- Inform all data providers when publications are about to be published.
- Acknowledge the AmeriFlux data resource: "Funding for AmeriFlux data resources was provided by the U.S. Department of Energy's Office
 of Science."

Acknowledge AmeriFlux data in presentations

- Use the AmeriFlux logo and/or the AmeriFlux web link (https://ameriflux.lbl.gov)
- List AmeriFlux sites using their SiteIDs and/or site name

New AmeriFlux CC BY 4.0 Data Use License (by Fall 2021)

CCby4

- Data free for use and reuse
- Proper citation/acknowledgement still required (specifics provided)
- Sites receive data download notifications

Support sites who remain on older "AmeriFlux policy"

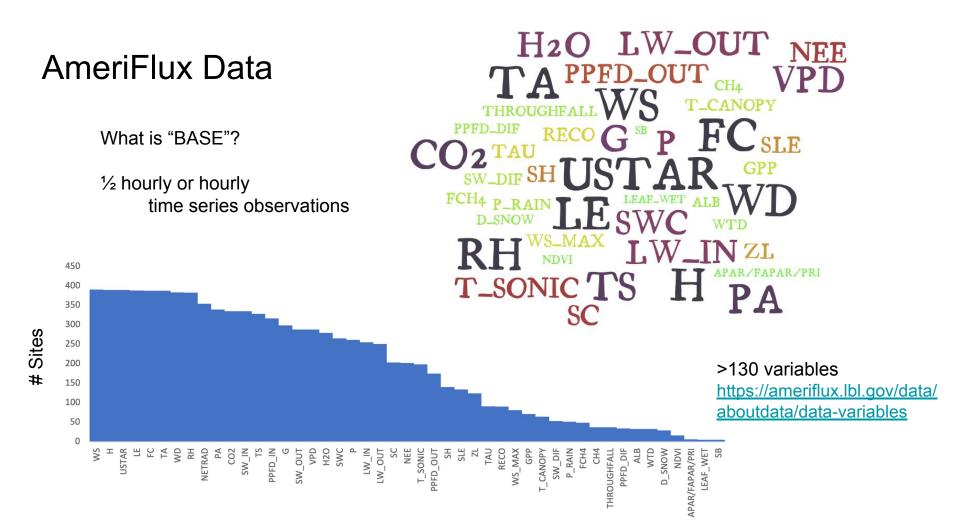
- Data quality checks and BASE publish
- Limited data and tech services e.g. no ONEFlux processing, lower priority for services
- One data policy per site
- AmeriFlux core sites and NEON have indicated that their data can be CCby4 starting invites now and have 108 sites moving so far.

New CC BY 4.0 AmeriFlux License

CC-BY-4.0 data are available following the guidelines of the CC-BY-4.0 data usage license (Creative Commons by Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/). The CC-BY-4.0 license specifies that the data user is free to Share (copy and redistribute the material in any medium or format) and/or Adapt (remix, transform, and build upon the material) for any purpose.

Use of AmeriFlux data shared under the CC-BY-4.0 license should follow these attribution guidelines:

* For each AmeriFlux site used: Provide a citation to the site's dataset. The citation should include the dataset DOI.


Note:

Collaboration with data providers (AmeriFlux Pls) is not required under CCBy4.0, but it can help avoid misinterpretation or other data issues and is appreciated by data providers.

Regardless, it is recommended that data users inform data providers of forthcoming publications using a site's data. An email list of AmeriFlux PIs for the downloaded sites is provided to the data user with data download.

What is "BASE"?

½ hourly or hourly time series observations

What to expect from AmeriFlux data?

Pros:

- A lot of data!
- Diversity of ecosystem types and environments.
- Direct and continuous observations of how ecosystems respond to environmental change.
- Carbon, water, energy and climate.

Cons:

- Uncertainty both random and systematic error
- Gaps instruments break, power goes off, weather becomes 'unclement', towers fall over, etc.
- The unexplained (beavers build dams, trees mast, cicadas emerge en mass, ice-storms defoliate)

Who's BAD*M*?!

'Know thy site!' Ray Leuning

Who's BAD*M*?! **B**iological **A**ncillary **D**ata **M**etadata

'Know thy site!' Ray Leuning

Site General Info

- · COUNTRY (Geographic Country)
- URL_AMERIFLUX (AmeriFlux URL)
- . HEADER (Site ID. Site Name, Submission details)
- TEAM_MEMBER (Team Membership)
- TEAM CONTACT
- SHIPPING ADDRESS
- · NETWORK (Network Affiliations)
- FLUX_MEASUREMENTS
- · STATE (Geographic State)
- . SITE_DESC (Site Description)
- RESEARCH_TOPIC
- SITE_FUNDING
- · LOCATION (Geographic Location)
- IGBP (International Geosphere-Biosphere Programme)
- LAND_OWNERSHIP
- · URL (Site Website)
- · REFERENCE PAPER (References)
- ACKNOWLEDGEMENT
- UTC_OFFSET
- CLIM_AVG (Average Climate)
- · SITE_CHAR (Site Characteristics)
- . DOM_DIST_MGMT (Dominant Disturbance and Management)
- TOWER_TYPE
- TOWER_POWER

Doi

- · DOI (Digital Object Identifier)
- DOI_ORGANIZATION (DOI Organizations)
- DOI_CONTRIBUTOR (DOI Contributors)
- . DOL_RELATED_DATA_DOI (Related DOI Information)

VegCover

- · SPP (Species Cover)
- . LAI (Leaf Area Index)
- · HEIGHTC (Canopy Height)
- · SA (Stand Age)
- . DBH (Diameter at Breast Height)
- . BASAL AREA
- . TREES NUM (Number of Trees)
- ROOT_DEPTH PHEN_EVENT_TYPE (Phenological Events)

Instrument

- · INST (Instrument Information)
- · INSTPAIR (Instrument Pairing Information)

Disturbance and Management

- DM_AGRICULTURE (Crop Management)
- DM_ENCROACH (Encroachment)
- DM_EXT_WEATHER (Extreme Weather)
- DM_FERT_M (Mineral Fertilization) . DM_FERT_O (Organic Fertilization)
- DM FIRE (Fire)
- DM_FORESTRY (Forestry Management)
- DM_GRAZE (Grazing)
- DM_INS_PATH (Insect, Pathogen, Disease)
- DM_PESTICIDE (Pesticide Application)
- DM_PLANTING (Planting)
- DM_TILL (Tillage)
- DM_WATER (Water Management)
- DM_GENERAL (General Disturbance)

Instrument Ops

· INSTOM (Instrument Operations)

Soil

- · SOIL_CHEM (Soil Chemical Concentration)
- · SOIL_STOCK (Soil Chemical Stock)
- SOIL_TEX (Soil Texture)
- PFCURVE (Water Retention Curve)
- · WTD (Water Table Depth)
- SWC (Soil Water Content)
- · SOIL_WRB_GROUP (Soil World Reference Base Group)
- SOIL_ORDER
- SOIL_CLASSIFICATION
- · SOIL SERIES
- SOIL_DEPTH

Who's BADM?! **B**iological **A**ncillary **D**ata **M**etadata

49 US-Ha1	17698	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
ISO US-Ha1	17698	GRP_TREES_NUM	TREES_NUM_DATE	20101207
51 US-Ha1	17698	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
52 US-Ha1	17698	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
53 US-Ha1	17743	GRP_TREES_NUM	TREES_NUM	0.39
54 US-Ha1	17743	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
55 US-Ha1	17743	GRP_TREES_NUM	TREES_NUM_DATE	20111201
56 US-Ha1	17743	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
57 US-Ha1	17743	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
58 US-Ha1	17788	GRP_TREES_NUM	TREES_NUM	0.39
59 US-Ha1	17788	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
60 US-Ha1	17788	GRP_TREES_NUM	TREES_NUM_DATE	20121204
61 US-Ha1	17788	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
62 US-Ha1	17788	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
53 US-Ha1	17833	GRP_TREES_NUM	TREES_NUM	0.39
54 US-Ha1	17833	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
55 US-Ha1	17833	GRP_TREES_NUM	TREES_NUM_DATE	20131212
66 US-Ha1	17833	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
67 US-Ha1	17833	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
SS US-Ha1	17888	GRP_TREES_NUM	TREES_NUM	0.39
59 US-Ha1	17888	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
70 US-Ha1	17888	GRP_TREES_NUM	TREES_NUM_DATE	19991027
71 US-Ha1	17888	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
72 US-Ha1	17888	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
73 US-Ha1	17948	GRP_TREES_NUM	TREES_NUM	0.39
74 US-Ha1	17948	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
75 US-Ha1	17948	GRP_TREES_NUM	TREES_NUM_DATE	20001024
76 US-Ha1	17948	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
77 US-Ha1	17948	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
78 US-Ha1	18007	GRP_TREES_NUM	TREES_NUM	0.39
79 US-Ha1	18007	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
80 US-Ha1	18007	GRP_TREES_NUM	TREES_NUM_DATE	20011026
81 US-Ha1	18007	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
82 US-Ha1	18007	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
83 US-Ha1	18067	GRP_TREES_NUM	TREES_NUM	0.39
84 US-Ha1	18067	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
85 US-Ha1	18067	GRP_TREES_NUM	TREES_NUM_DATE	20021114
86 US-Ha1	18067	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
87 US-Ha1	18067	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
88 US-Ha1	18127	GRP_TREES_NUM	TREES_NUM	0.39
89 US-Ha1	18127	GRP_TREES_NUM	TREES_NUM_SPP	Acer pennsylvanicum
90 US-Ha1	18127	GRP_TREES_NUM	TREES_NUM_DATE	20031113
91 US-Ha1	18127	GRP_TREES_NUM	TREES_NUM_SPATIAL_REP_NUMBER	34
92 US-Ha1	18127	GRP_TREES_NUM	TREES_NUM_SPATIAL_VARIABILITY	2.28
93 US-Ha1	18187	GRP_TREES_NUM	TREES NUM	0.39

BIF: the BADM Interchange Format

Site General Info

- · COUNTRY (Geographic Country)
- URL_AMERIFLUX (AmeriFlux URL)
- . HEADER (Site ID. Site Name, Submission details)
- TEAM_MEMBER (Team Membership)
- TEAM CONTACT
- SHIPPING ADDRESS
- · NETWORK (Network Affiliations)
- FLUX_MEASUREMENTS
- · STATE (Geographic State)
- . SITE_DESC (Site Description)
- RESEARCH_TOPIC
- SITE_FUNDING
- · LOCATION (Geographic Location)
- IGBP (International Geosphere-Biosphere Programme)
- LAND_OWNERSHIP
- · URL (Site Website)
- · REFERENCE PAPER (References)
- ACKNOWLEDGEMENT
- UTC_OFFSET
- CLIM_AVG (Average Climate)
- · SITE_CHAR (Site Characteristics)
- . DOM_DIST_MGMT (Dominant Disturbance and Management)
- TOWER_TYPE
- TOWER_POWER

Doi

- · DOI (Digital Object Identifier)
- DOI_ORGANIZATION (DOI Organizations)
- DOI_CONTRIBUTOR (DOI Contributors)
- . DOL_RELATED_DATA_DOI (Related DOI Information)

VegCover

- · SPP (Species Cover)
- . LAI (Leaf Area Index)
- · HEIGHTC (Canopy Height)
- · SA (Stand Age)
- · DBH (Diameter at Breast Height)
- BASAL_AREA . TREES_NUM (Number of Trees)
- · ROOT_DEPTH
- PHEN_EVENT_TYPE (Phenological Events)

Instrument

- · INST (Instrument Information)
- · INSTPAIR (Instrument Pairing Information)

Disturbance and Management

- DM_AGRICULTURE (Crop Management)
- DM_ENCROACH (Encroachment)
- DM_EXT_WEATHER (Extreme Weather)
- DM_FERT_M (Mineral Fertilization)
- DM_FERT_O (Organic Fertilization)
- DM FIRE (Fire)
- DM_FORESTRY (Forestry Management)
- DM_GRAZE (Grazing)
- DM_INS_PATH (Insect, Pathogen, Disease)
- DM_PESTICIDE (Pesticide Application)
- DM_PLANTING (Planting)
- DM_TILL (Tillage)
- DM_WATER (Water Management)
- DM_GENERAL (General Disturbance)

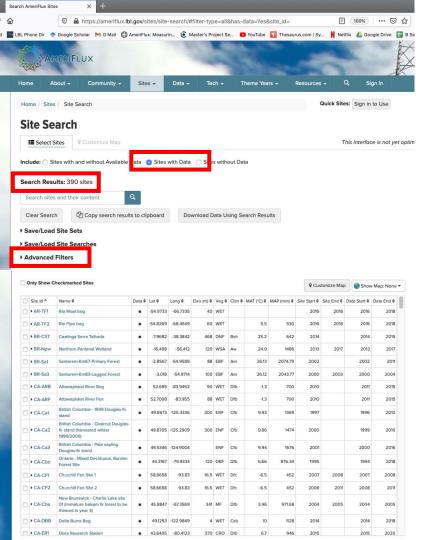
Instrument Ops

· INSTOM (Instrument Operations)

Soil

- · SOIL_CHEM (Soil Chemical Concentration)
- · SOIL_STOCK (Soil Chemical Stock)
- SOIL_TEX (Soil Texture)
- PFCURVE (Water Retention Curve)
- · WTD (Water Table Depth)
- SWC (Soil Water Content)
- · SOIL_WRB_GROUP (Soil World Reference Base Group)
- SOIL_ORDER
- SOIL_CLASSIFICATION
- · SOIL SERIES
- SOIL_DEPTH

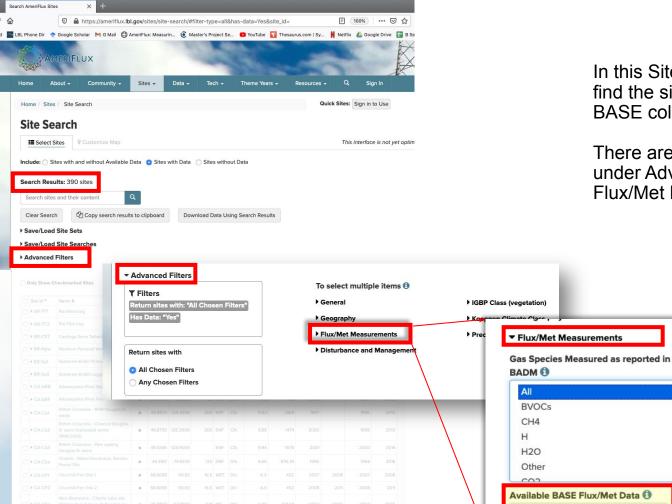
Poll:


Have you used BADM data before?

AmeriFlux Data Discovery

Margaret Torn AMP Lead PI

Search / Download / Map / Site Sets



You can download data for 390 AmeriFlux sites at ameriflux.lbl.gov.

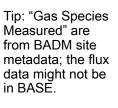
How do you find the sites (and data) you want to use?

The Site Search tool can help!

(check out the individual site info pages, too)

In this Site Search example, I want to find the sites with methane flux data in BASE collected before 2012.

There are many useful search terms under Advanced Filters. We'll use Flux/Met Measurements.

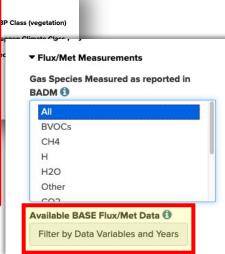

All

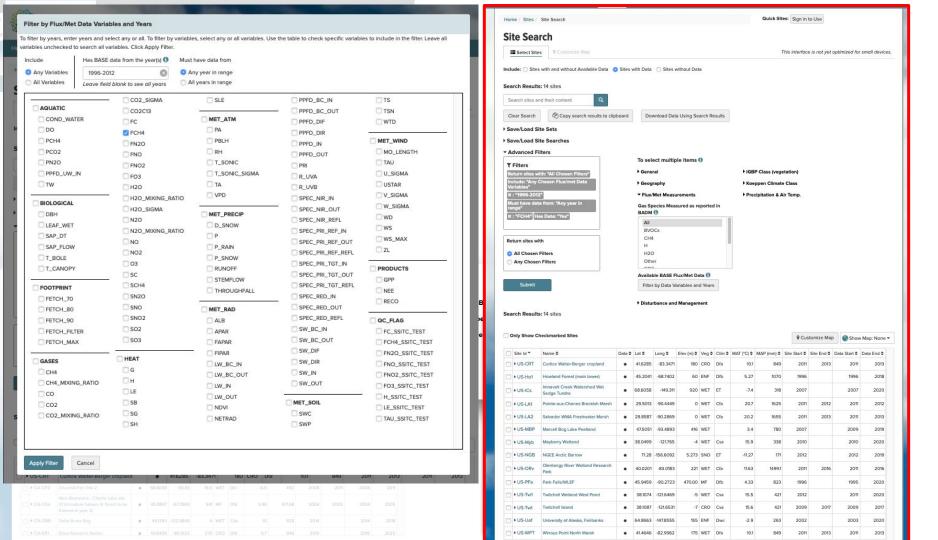
BVOCs

CH4

H20 Other

Filter by Data Variables and Years

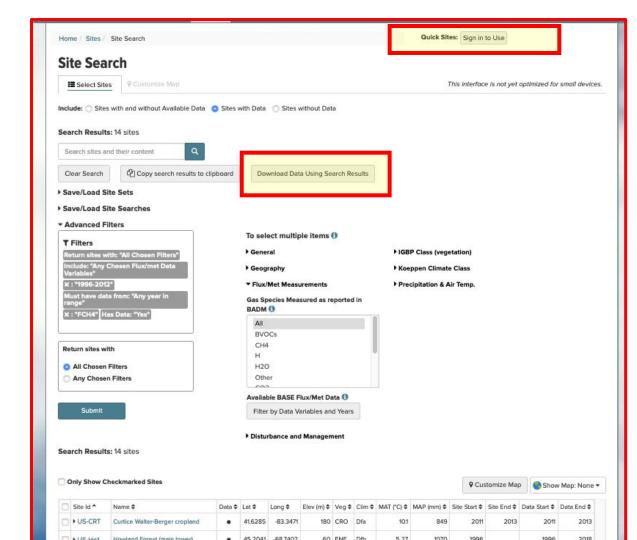



We'll look at Available BASE Flux/Met Data

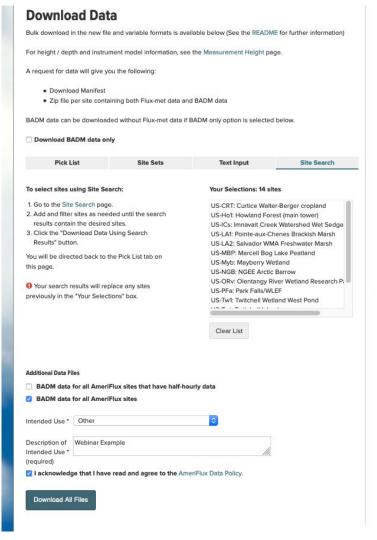
	earch all variable	s. Click Apply Filte		serect any	or all varia	ables. Use 1	the table	to cneck :	specinc vari	wes to	include in the	e filter. Leave	all
Include Has BASE data fro		rom the year(s) 🐧	Must hav	ve data fro	om								
Any Variables	1996-2012	2012 💿 O An		y year in range									
All Variables	Leave field blank		○ All ye	ears in ran	ige								
		CO2_SIGMA		SLE				PPFD_BC_	JIN		□ TS		
AQUATIC		CO2C13	13-	2.0000000000000000000000000000000000000	3503000	-		PPFD_BC_	_OUT		☐ TSN		
COND_WATER		FC		MET_	ATM			PPFD_DIF			☐ WTD		
DO		FCH4		□ PA				PPFD_DIR		_			-
PCH4] FN20		☐ PBL				PPFD_IN			MET_WIND		
PCO2		FNO		RH				PPFD_OU	T:		MO_LENG	STH	
PN2O		FNO2		T_S		100		PRI			TAU		
PPFD_UW_IN		□ FO3		T_SONIC_SIGMA		R_UVA		U_SIGMA					
TW		H2O		☐ TA				R_UVB			USTAR		
BIOLOGICAL		H2O_MIXING_R	ATIO	□ VPD	Pills			SPEC_NIR	_IN		U_SIGMA		
DBH		H2O_SIGMA		MET	PRECIP			SPEC_NIR	OUT		W_SIGMA	4	
LEAF_WET		N20		DD.S				SPEC_NIR	3		□ WD		
SAP DT		N2O_MIXING_R	ATIO	□ P				SPEC_PRI	_REF_IN		WS		
SAP_FLOW		□NO		□ P.R	PAIN			SPEC_PRI	_REF_OUT		WS_MAX		
T_BOLE		NO2		□P_S				SPEC_PRI	_REF_REFL		ZL		
T_CANOPY		03		RUN				SPEC_PRI	_TGT_IN	-	PRODUCTS		-
		SC			MFLOW			SPEC_PRI	_TGT_OUT		GPP		
FOOTPRINT		SCH4			ROUGHFAL	1		SPEC_PRI	_TGT_REFL		□ NEE		
FETCH_70		SN20			IOOOI II AL	<u> </u>		SPEC_RED	_IN		RECO		
FETCH_80		SNO		MET_	RAD			SPEC_RED	_OUT	_	CIRCO		_
FETCH_90		SNO2		☐ ALB	1			SPEC_RED	_REFL	0	QC_FLAG		
FETCH_FILTER		SO2		□ APA	R			SW_BC_IN	l		□ FC_SSITO	_TEST	
FETCH_MAX		SO3		FAP	AR			SW_BC_O	UT		FCH4_SS	ITC_TEST	
No. 200 Company Com				☐ FIPA	AR			SW_DIF			☐ FN2O_SS	SITC_TEST	
GASES				□ LW_	BC_IN			SW_DIR			☐ FNO_SSI	TC_TEST	
CH4				LW_	BC_OUT			SW_IN			FNO2_SS	SITC_TEST	
CH4_MIXING_	KAIIO			LW_	_IN			SW_OUT			FO3_SSIT	C_TEST	
СО				□ LW_	OUT						H_SSITC_	TEST	
□ CO2				□ ND\	И			77.5			LE_SSITC	_TEST	
CO2_MIXING_RATIO				□ NET	RAD						TAU_SSIT	C_TEST	
] SH					U	SWP					
CH4_MIXING_I CO CO2	RATIO C	HEAT G H LE SB SG		FIPAR LW_BC_IN LW_BC_OUT LW_IN LW_OUT NDVI NETRAD		SW_DIF SW_DIR SW_IN SW_OUT MET_SOIL SWC SWP		PN2O_SSITC_TEST PNO_SSITC_TEST PNO_SSITC_TEST PNO2_SSITC_TEST PO3_SSITC_TEST LE_SSITC_TEST LE_SSITC_TEST TAU_SSITC_TEST					

In this Site Search example, I want to find the sites with methane flux data in BASE collected before 2012.

There are many useful search terms under Advanced Filters. We'll use Flux/Met Measurements.



Now that I've identified the 14 sites that have methane flux data available up to 2012, how do I...


- Download data for those sites?
- Make a map of the sites?
- Save a "site set" to work with later?

Download data for those sites?

- 1. Sign In.
- 2. Click "Download Data Using Search Results."

Download data for those sites?

 Download data for those sites?

Cool!

Four ways to select sites for data download

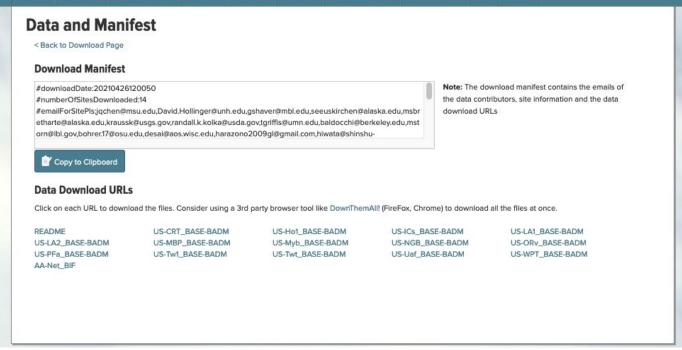
Download Data

Bulk download in the new file and variable formats is available below (See the README for further information)

For height / depth and instrument model information, see the Measurement Height page.

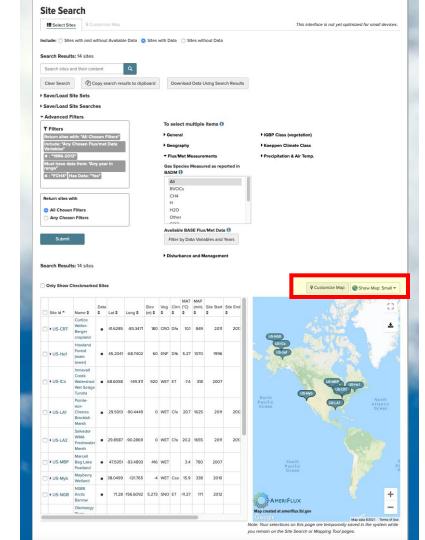
A request for data will give you the following:

Measurement height or soil depth are not included in BADM vet. You can download here.


- Download Manifest
- · Zip file per site containing both Flux-met data and BADM data

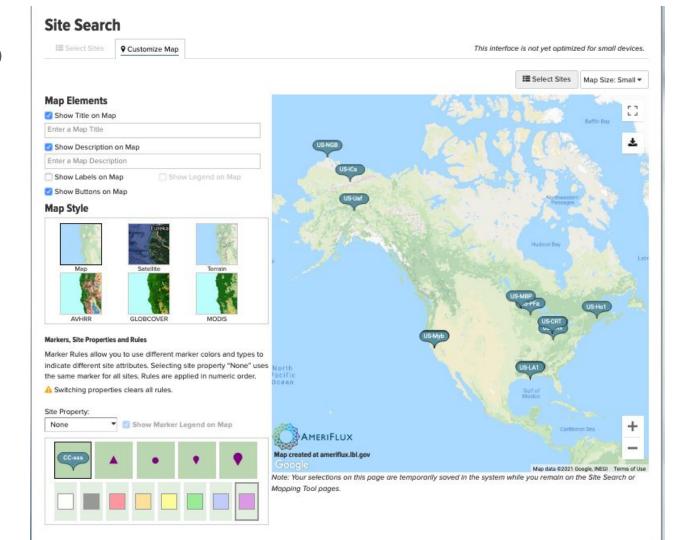
BADM data can be downloaded without Flux-met data if BADM only option is selected below.

Download BADM data only


Pick List Site Sets Text Input Site Search To select sites using Site Search: Your Selections: 14 sites 1. Go to the Site Search page. US-CRT: Curtice Walter-Berger cropland 2. Add and filter sites as needed until the search US-Ho1: Howland Forest (main tower) results contain the desired sites. US-ICs: Imnavait Creek Watershed Wet Sedge 3. Click the "Download Data Using Search US-LA1: Pointe-aux-Chenes Brackish Marsh Results" button. US-LA2: Salvador WMA Freshwater Marsh US-MBP: Marcell Bog Lake Peatland You will be directed back to the Pick List tab on US-Myb: Mayberry Wetland this page. US-NGB: NGEE Arctic Barrow US-ORv: Olentangy River Wetland Research Pi Your search results will replace any sites US-PFa: Park Falls/WLEF previously in the "Your Selections" box. US-Tw1: Twitchell Wetland West Pond Clear List

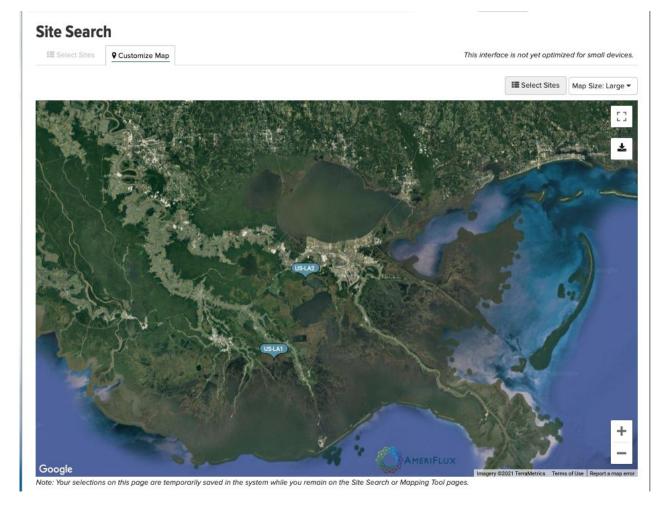
Download data for those sites?

Make a map of the sites?

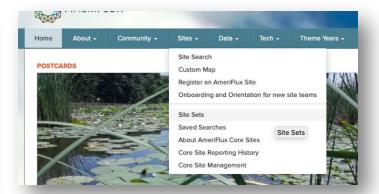

Select Custom Maps to change base layer and markers

Make a map of the sites?

Custom Maps allows you to change base layer and markers, add title, and save as high resolution file.

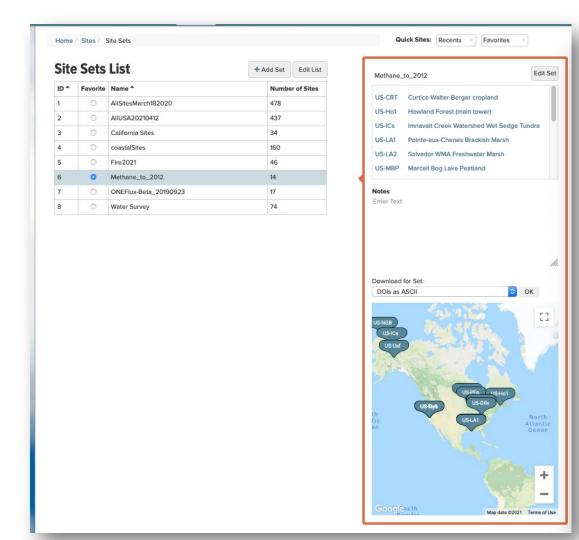

You can toggle between the Custom Map and Site Search pages

Make a map of the sites?


Zooming in on two of the 14 original methane flux sites.

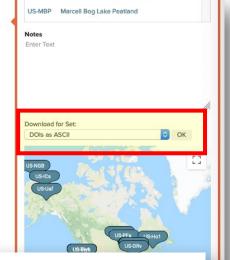
They were right near New Orleans (where the 2021 AGU Fall Meeting will be!)

Save a "site set" to work with later?



You can save or load a Site Set on the search page.

Or you can go straight to your Site Sets page from the Home menu, if you are logged in. Save a "site set" to work with later?


I created a site set for the 14 original methane flux sites.

This is what it looks like on the Site Sets page.

 Site sets make it easy to get citations, contact Pls, update searches / maps more

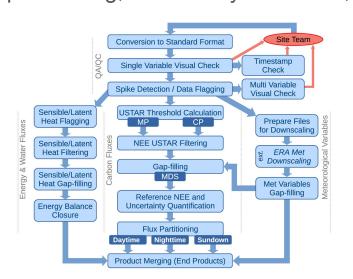
5	5 O Fire2021		46		
6	0	Methane_to_2012	14		
7	0	ONEFlux-Beta_20190923	17		
8	0	Water Survey	74		

Methane_to_2012-DOI

#Set Name:	Methane_to_2012		
#Content:	Ameriflux DOIs		
Site ID	Site Name	DOI	Citation
US-CRT	Curtice Walter-Berger cropland	https://doi.org/10.17190/AMF/1246156	Jiquan Chen, Housen Chu AmeriFlux US-CRT Curtice Walter-Berger cropland, 10.17190/AMF/1246156
US-Ho1	Howland Forest (main tower)	https://doi.org/10.17190/AMF/1246061	David Hollinger AmeriFlux US-Ho1 Howland Forest (main tower), 10.17190/AMF/1246061
US-ICs	Imnavait Creek Watershed Wet Sedge Tundra	https://doi.org/10.17190/AMF/1246130	Eugenie Euskirchen, Gaius Shaver, Syndonia Bret-Harte AmeriFlux US-ICs Imnavait Creek Watershed Wet Sedge Tundra, 10.17190/AMF/1246130
US-LA1	Pointe-aux-Chenes Brackish Marsh	https://doi.org/10.17190/AMF/1543386	Ken Krauss AmeriFlux US-LA1 Pointe-aux-Chenes Brackish Marsh, 10.17190/AMF/1543386
US-LA2	Salvador WMA Freshwater Marsh	https://doi.org/10.17190/AMF/1543387	Ken Krauss AmeriFlux US-LA2 Salvador WMA Freshwater Marsh, 10.17190/AMF/1543387
US-MBP	Marcell Bog Lake Peatland	https://doi.org/10.17190/AMF/1767835	Randy Kolka, Timothy Griffis AmeriFlux US-MBP Marcell Bog Lake Peatland, 10.17190/AMF/1767835
US-Myb	Mayberry Wetland	https://doi.org/10.17190/AMF/1246139	Jaclyn Hatala Matthes, Cove Sturtevant, Patty Oikawa, Samuel D Chamberlain, Daphne Szutu, Ariane Arias Ortiz, Joseph Verfaillie, Dennis Baldocchi AmeriFlux US-Myb Mayberry Wetland, 10.17190/AMF/1246139
US-NGB	NGEE Arctic Barrow	https://doi.org/10.17190/AMF/1436326	Margaret Torn, Sigrid Dengel AmeriFlux US-NGB NGEE Arctic Barrow, 10.17190/AMF/1436326
US-ORv	Olentangy River Wetland Research Park	https://doi.org/10.17190/AMF/1246135	Gil Bohrer AmeriFlux US-ORv Olentangy River Wetland Research Park, 10.17190/AMF/1246135
US-PFa	Park Falls/WLEF	https://doi.org/10.17190/AMF/1246090	Ankur Desai AmeriFlux US-PFa Park Falls/WLEF, 10.17190/AMF/1246090
US-Tw1	Twitchell Wetland West Pond	https://doi.org/10.17190/AMF/1246147	Alex Valach, Daphne Szutu, Elke Eichelmann, Sara Knox, Joseph Verfaillle, Dennis Baldocchi AmeriFlux US-Tw1 Twitchell Wetland West Pond, 10.17190/AMF/1246147
US-Twt	Twitchell Island	https://doi.org/10.17190/AMF/1246140	Sara Knox, Jaclyn Hatala Matthes, Joseph Verfaillie, Dennis Baldocchi AmeriFlux US-Twt Twitchell Island, 10.17190/AMF/1246140
US-Uaf	University of Alaska, Fairbanks	https://doi.org/10.17190/AMF/1480322	Masahito Ueyama, Hiroki Iwata, Yoshinobu Harazono AmeriFlux US-Uaf University of Alaska, Fairbanks, 10.17190/AMF/1480322
US-WPT	Winous Point North Marsh	https://doi.org/10.17190/AMF/1246155	Jiquan Chen, Housen Chu AmeriFlux US-WPT Winous Point North Marsh, 10.17190/AMF/1246155

Running Poll (we'll revisit suggestions at the end of the webinar):

What features would you like to see from AmeriFlux?


pollev.com/ameriflux

ONEFlux:

Open Network-Enabled Flux processing pipeline

Gilberto

- ONEFlux is an eddy covariance data processing codes package
- Key features: USTAR filtering, met/flux gap-filling, CO₂ flux partitioning, uncertainty estimates, ...

For more, check out:

Data Descriptor | Open Access | Published: 09 July 2020

Paper:

The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

Gilberto Pastorello ♥, Carlo Trotta, [...] Dario Papale ♥

Scientific Data 7, Article number: 225 (2020) | Cite this article

https://www.nature.com/articles/s41597-020-0534-3

- Quick-start guide (flux variables):
 https://fluxnet.org/data/fluxnet2015-dataset/variables-quick-start-guide/
- Webinar:

Requirements for processing data from an AmeriFlux site using ONEFlux

AMP webinar series October 19th, 2020

https://youtu.be/JPJnfckAMtl

FLUXNET Data Product ... from ONEFlux Processing

FLUXNET2015

https://fluxnet.org/data/fluxnet2015-dataset/

Up to 2014

Last update Feb 2020 (additional metadata)

AmeriFlux FLUXNET Beta Product

https://ameriflux.lbl.gov/data/download-dataoneflux-beta/

Largely compatible with FLUXNET2015

More recent AmeriFlux data

AmeriFlux FLUXNET Product (in prep.)

https://ameriflux.lbl.gov/

Production runs for AmeriFlux sites; currently starting collection of additional metadata to allow processing

First few sites to be made available Sep 2021

AmeriFlux Data - collaborating resources

Collaborating networks - e.g., Phenocam

Collaborating agencies - e.g., NASA, USGS

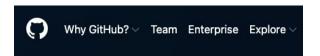
Collaborating codebases

AmeriFlux Data - collaborating resources

Collaborating networks - e.g., Phenocam

Collaborating agencies - e.g., NASA, USGS

Collaborating codebases



AmeriFlux Data - collaborating resources

Collaborating networks - e.g., Phenocam

Collaborating agencies - e.g., NASA

Collaborating codebases

AmerifluxR

The Ameriflux R toolbox is a collection of functions to facilitate the retrieval and processing of Ameriflux data.

View the Project on GitHub khufkens/amerifluxr

AmeriFluxR

AmeriFluxR is a R toolbox to facilitate easy Ameriflux Level2 data exploration and downloads through a convenient R shiny based GUI. I'll integrate support for Level3 data in the near future as well as some additional functionality to summarize the data more concisely.

 NOTE: bugs bugs bugs, this is an initial release and given my limited testing platforms the application might be especially buggy on Windows. Relative paths have been an issue as well, since for development purposes I need to run the code unpackaged (some of those might sneak in). If you find any bug, create a bug report on my GitHub page.

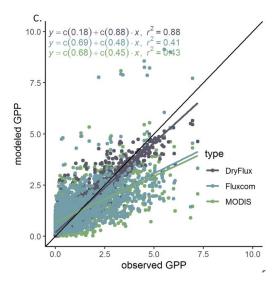
Installation

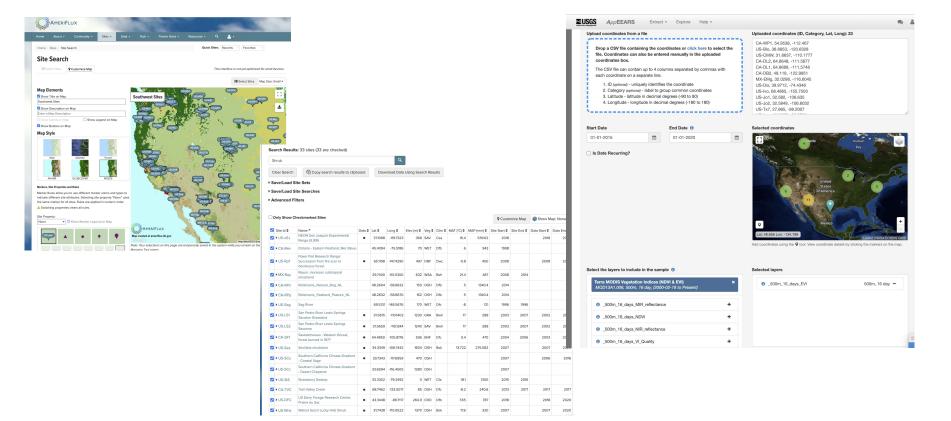
You can quick install the package by installing the following dependencies

install.packages(c("rvest","data.table","curl","RCurl","DT","shiny"

Mallory Barnes Assistant Prof. Indiana University

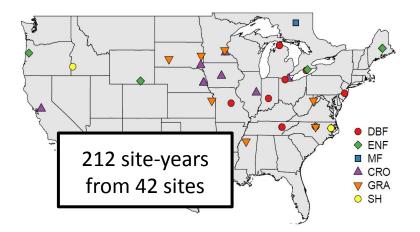
Minkyu Moon Postdoc Boston University


Sophie Ruehr Grad Student UC Berkeley


Mallory Barnes Assistant Prof. Indiana University

Barnes et al. 2021: Ecohydrological water-carbon coupling improves dryland carbon flux prediction of average uptake, interannual variability, and drought *in review*

AmeriFlux <-> AppEEARS makes it easy to get point remote sensing data!



Minkyu Moon
Postdoc
Boston University
LCSC Group

 Research Interest remote sensing; vegetation phenology; forest ecology

- A multi-site synthesis and remote sensing study

Moon et al., 2020 Modification of surface energy balance during springtime: The relative importance of biophysical and meteorological changes. *AFM*, https://doi.org/10.1016/j.agrformet.2020.107905

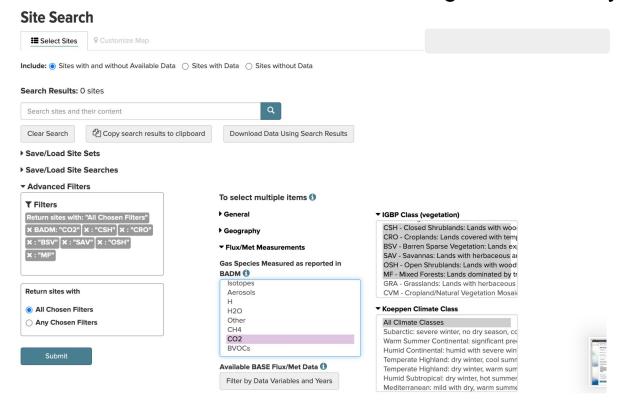
- Hard to sort out sub-data set based on user's demand e.g., by...
 - vegetation type
 - data duration
 - variables
 - ancillary data(e.g.,NEON, PhenoCam, etc.)
 - o ..

Minkyu Moon Postdoc Boston University A package program → Updated "AmerifluxR"?

```
e.g., "MODISTools" or "phenocamr" packages in R
```

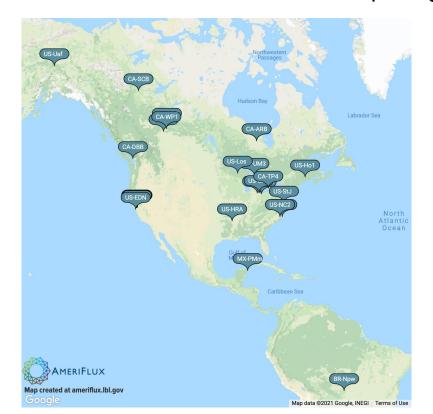
From data download to simple analysis...

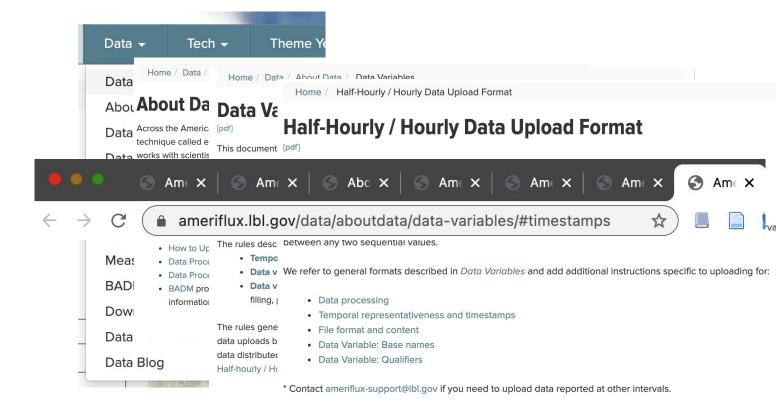
Example functions...


```
aero_heightc(site = "US-Ha1",
Inputs = "...",
```

- Function 2

Sophie Ruehr Grad Student UC Berkeley


Starting a multi-site synthesis


Sophie Ruehr Grad Student UC Berkeley

AmeriFlux sites reporting water table depth

Sophie Ruehr Grad Student UC Berkeley

Poll:

What features would you like to see from AmeriFlux?

Link to poll pollev.com/ameriflux

What features would you like to see from AmeriFlux?

Top

Thank you!

Special thanks to:

- Our user panel
- Our funders (DOE Office of Science)
- The AmeriFlux data contributors
- The AmeriFlux Management Project Team
- You, for putting the data to such great use